For Example 32 above: 
Wolfram Alpha says lim (x^2 + y^2 - sin(x^2 + y^2))/(x^2 + y^2) ^ 3  x-> 0 y-> 0    is   1/6
Solving Example 32 by expanding sin(t) into a series below....
Solving Example 32 by letting u = x^2 + y^2
For Example 33 above: 
Wolfram Alpha says lim (2x^2 - xy - y^2)/( x^2 - y^2) as x-> 1 y-> 1     is     3/2   
Or we can do example 33 like this - below.
For Example 34 above:
WolframAlpha says this limit:  lim (x^2 + y^2)/ (   (x^2 + y^2 + 1)^(1/2) -1)   x-> 0    y-> 0     is    2  
Or we can do Example 35 this way.
Or we can do Example 36 by converting to polar coordinates and letting r-> 0 (see below)
.............................................................................................................................................
..............................................................................................................................................
................................................................................................................................................................................
Example 40B below shows a 'standard' way of evaluating the limit in Example 40
Example 41B below shows evaluating example 41 by substituting u = (......)
WolframALpha says:
Lim (  2- 2cos(2x) +  y^2 + cos(2x)y^2 ) / (  12x^2 + x^2cos(2x)  + 12  + cos(2x) - 12cos(y)  -  cos(2x)cos(y)  ) (x, y) -> (0,0)   =  4/13
Example 44: Using SymPy to calculate 4th order differentials for f and g. See this link: https://live.sympy.org
Where expr and expr2 is defined in SymPy as:
Fourth order partial derivatives of f(x, y) evaluated at (x, y) = (0,0) as calculated by SymPy:
Fourth order partial derivatives of g(x, y) evaluated at (x, y) = (0,0) as calculated by SymPy:
This results in ... 
(Note there are 6 dx^2dy^2 terms, 4 dx^3dy terms and 4 dxdy^3 terms)
Using SymPy to calculate the limit:
Using Wolfram-Alpha to calculate the limit:
....................................................................................................................
Example 45:
For this example, we use online tool Wolfram Alpha to calculate and evaluate differentials.
Now calculate the mixed second order partial derivatives.
The above shows Wolfram Alpha results for: fx, fy, fz, fxx, fyy, fzz, fxy, fxz, and fyz. Not shown are: gx, gy, gz, gxx, gyy, gzz, gxy, gxz, and gyz.
The limit of each of the first partial derivatives of f(x, y, z) and g(x, y, z) as (x, y, z) -> (0,0,0) is zero.
Below are results from Wolfram Alpha for Lim of each of the second partial derivatives of f(x, y, z) and g(x, y, z) as (z, y, z) -> (0,0,0)
Plugging in the values for each of these limits results in:
Below uses Wolfram Alpha to evaluate the limit of f(x, y, z)/g(x, y, z).